On the strange domain of attraction to generalized Dickman distributions for sums of independent random variables
Author(s) -
Ross G. Pinsky
Publication year - 2018
Publication title -
electronic journal of probability
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.666
H-Index - 53
ISSN - 1083-6489
DOI - 10.1214/17-ejp126
Subject(s) - mathematics , combinatorics , random variable , domain (mathematical analysis) , distribution (mathematics) , logarithm , bernoulli distribution , mathematical analysis , statistics
Let $\{B_k\}_{k=1}^\infty, \{X_k\}_{k=1}^\infty$ all be independent random variables. Assume that $\{B_k\}_{k=1}^\infty$ are $\{0,1\}$-valued Bernoulli random variables satisfying $B_k\stackrel{\text{dist}}{=}\text{Ber}(p_k)$, with $\sum_{k=1}^\infty p_k=\infty$, and assume that $\{X_k\}_{k=1}^\infty$ satisfy: $X_k>0,\ \ \ \mu_k\equiv EX_k 0$ and let $$ \begin{aligned} &\mu_n\sim c_\mu n^{a_0}\prod_{j=1}^{J_\mu}(\log^{(j)}n)^{a_j}, p i &iii.\ a_j=0, \ 0\le j\le J_p-1,\ \text{and}\ \ a_{J_p}>0, \end{aligned} $$ then $ \lim_{n\to\infty}W_n\stackrel{\text{dist}}{=}\frac1{\theta}\text{GD}(\theta),\ \text{where}\ \theta=\frac{c_p}{a_{J_p}}. $ Otherwise, $\lim_{n\to\infty}W_n\stackrel{\text{dist}}{=}c$, for some $c\in[0,1]$. We also give an application to the statistics of the number of inversions in certain shuffling schemes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom