z-logo
open-access-imgOpen Access
On the strange domain of attraction to generalized Dickman distributions for sums of independent random variables
Author(s) -
Ross G. Pinsky
Publication year - 2018
Publication title -
electronic journal of probability
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.666
H-Index - 53
ISSN - 1083-6489
DOI - 10.1214/17-ejp126
Subject(s) - mathematics , combinatorics , random variable , domain (mathematical analysis) , distribution (mathematics) , logarithm , bernoulli distribution , mathematical analysis , statistics
Let $\{B_k\}_{k=1}^\infty, \{X_k\}_{k=1}^\infty$ all be independent random variables. Assume that $\{B_k\}_{k=1}^\infty$ are $\{0,1\}$-valued Bernoulli random variables satisfying $B_k\stackrel{\text{dist}}{=}\text{Ber}(p_k)$, with $\sum_{k=1}^\infty p_k=\infty$, and assume that $\{X_k\}_{k=1}^\infty$ satisfy: $X_k>0,\ \ \ \mu_k\equiv EX_k 0$ and let $$ \begin{aligned} &\mu_n\sim c_\mu n^{a_0}\prod_{j=1}^{J_\mu}(\log^{(j)}n)^{a_j}, p i &iii.\ a_j=0, \ 0\le j\le J_p-1,\ \text{and}\ \ a_{J_p}>0, \end{aligned} $$ then $ \lim_{n\to\infty}W_n\stackrel{\text{dist}}{=}\frac1{\theta}\text{GD}(\theta),\ \text{where}\ \theta=\frac{c_p}{a_{J_p}}. $ Otherwise, $\lim_{n\to\infty}W_n\stackrel{\text{dist}}{=}c$, for some $c\in[0,1]$. We also give an application to the statistics of the number of inversions in certain shuffling schemes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom