Open Access
Relationship between Thyrotropin Receptor Hinge Region Proteolytic Posttranslational Modification and Receptor Physiological Function
Author(s) -
Sepehr Hamidi,
Chun-Rong Chen,
Yumiko Mizutori-Sasai,
Sandra M. McLachlan,
Basil Rapoport
Publication year - 2011
Publication title -
molecular endocrinology
Language(s) - English
Resource type - Journals
eISSN - 1944-9917
pISSN - 0888-8809
DOI - 10.1210/me.2010-0401
Subject(s) - thyrotropin receptor , biology , receptor , amino acid , signal transduction , biochemistry , peptide sequence , c terminus , microbiology and biotechnology , genetics , gene , thyroid , graves' disease
The glycoprotein hormone receptor hinge region is the least conserved component and the most variable in size; the TSH receptor (TSHR) being the longest (152 amino acids; residues 261-412). The TSHR is also unique among the glycoprotein hormone receptor in undergoing in vivo intramolecular cleavage into disulfide-linked A- and B-subunits with removal of an intervening 'C-peptide' region. Experimentally, hinge region amino acids 317-366 (50 residues) can be deleted without alteration in receptor function. However, in vivo, more than 50 amino acids are deleted during TSHR intramolecular cleavage; furthermore, the boundaries of this deleted region are ragged and poorly defined. Studies to determine the extent to which hinge region deletions can be tolerated without affecting receptor function ('minimal hinge') are lacking. Using as a template the functionally normal TSHR with residues 317-366 deleted, progressive downstream extension of deletions revealed residue 371 to be the limit compatible with normal TSH binding and coupling with cAMP signal transduction. Based on the foregoing downstream limit, upstream deletion from residue 307 (307-371 deletion) was also tolerated without functional alteration, as was deletion of residues 303-366. Addressing a related issue regarding the functional role of the TSHR hinge region, we observed that downstream hinge residues 377-384 contribute to coupling ligand binding with cAMP signal transduction. In summary, we report the first evaluation of TSHR function in relation to proteolytic posttranslational hinge region modifications. Deletion of TSHR hinge amino acids 303-366 (64 residues) or 307-371 (65 residues) are the maximum hinge region deletions compatible with normal TSHR function.