z-logo
open-access-imgOpen Access
Epidermal Growth Factor-Induced GnRH-II Synthesis Contributes to Ovarian Cancer Cell Invasion
Author(s) -
Song Ling Poon,
Gareth T. Hammond,
Peter C.K. Leung
Publication year - 2009
Publication title -
the journal of clinical endocrinology and metabolism/journal of clinical endocrinology and metabolism
Language(s) - English
Resource type - Journals
eISSN - 1945-7197
pISSN - 0021-972X
DOI - 10.1210/jcem.94.9.9996
Subject(s) - gnrhr , creb , epidermal growth factor , biology , microbiology and biotechnology , chromatin immunoprecipitation , endocrinology , protein kinase b , medicine , cancer research , gonadotropin releasing hormone , receptor , signal transduction , promoter , gene expression , transcription factor , hormone , gene , biochemistry , luteinizing hormone
GnRH-II modulates ovarian cancer cells invasion and is expressed in normal ovary and ovarian epithelial cancer cells; however, the upstream regulator(s) of GnRH-II expression in these cells remains unclear. We now demonstrate that epidermal growth factor (EGF) increases GnRH-II mRNA levels in several human ovarian carcinoma cell lines and up-regulates GnRH-II promoter activity in OVCAR-3 cells in a dose-dependent manner, whereas an EGF receptor inhibitor (AG148) abolishes EGF-induced increases in GnRH-II promoter activity and GnRH-II mRNA levels. EGF increases the phosphorylation of cAMP-responsive element-binding protein (p-CREB) and its association with the coregulator, CCAAT/enhancer binding protein β, whereas blocking the EGF-induced ERK1/2 phosphorylation with MAPK inhibitors (PD98059/U0126) markedly reduced these effects. Moreover, depletion of CREB using small interfering RNA attenuated EGF-induced GnRH-II promoter activity. Chromatin immunoprecipitation assays demonstrated that EGF induces p-CREB binding to a cAMP responsive-element within the GnRH-II promoter, likely in association with CCAAT/enhancer binding protein β, and mutagenesis of this cAMP responsive-element prevented EGF-induced GnRH-II promoter activity in OVCAR-3 cells. Importantly, GnRH-II acts additively with EGF to promote invasion of OVCAR-3 and CaOV-3 cells, but not SKOV-3 cells that express low levels of GnRH receptor (GnRHR). Treatment with GnRHR small interfering RNA also partially inhibited the EGF-induced invasion of OVCAR-3 and CaOV-3 cells. Furthermore, EGF treatment transiently increases GnRHR levels in OVCAR-3 and CaOV-3, which likely accentuates the effects of increase GnRH-II production on cell invasion. These results provide evidence that EGF is an upstream regulator of the autocrine actions of GnRH-II on the invasive properties of ovarian cancer cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here