z-logo
open-access-imgOpen Access
Obesity, POMC, and POMC-processing Enzymes: Surprising Results From Animal Models
Author(s) -
Iris Lindberg,
Lloyd D. Fricker
Publication year - 2021
Publication title -
endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 257
eISSN - 1945-7170
pISSN - 0013-7227
DOI - 10.1210/endocr/bqab155
Subject(s) - proopiomelanocortin , prohormone , carboxypeptidase , endocrinology , medicine , neuropeptide , proprotein convertases , prohormone convertase , biology , melanocortin , hormone , leptin , enzyme , mutant , hypothalamus , melanocyte stimulating hormone , gene , biochemistry , obesity , lipoprotein , receptor , ldl receptor , cholesterol
Peptides derived from proopiomelanocortin (POMC) are well-established neuropeptides and peptide hormones that perform multiple functions, including regulation of body weight. In humans and some animals, these peptides include α– and β–melanocyte-stimulating hormone (MSH). In certain rodent species, no β-MSH is produced from POMC because of a change in the cleavage site. Enzymes that convert POMC into MSH include prohormone convertases (PCs), carboxypeptidases (CPs), and peptidyl-α-amidating monooxygenase (PAM). Humans and mice with inactivating mutations in either PC1/3 or carboxypeptidase E (CPE) are obese, which was assumed to result from defective processing of POMC into MSH. However, recent studies have shown that selective loss of either PC1/3 or CPE in POMC-expressing cells does not cause obesity. These findings suggest that defects in POMC processing cannot alone account for the obesity observed in global PC1/3 or CPE mutants. We propose that obesity in animals lacking PC1/3 or CPE activity depends, at least in part, on deficient processing of peptides in non–POMC-expressing cells either in the brain and/or the periphery. Genetic background may also contribute to the manifestation of obesity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom