Proteomic Profile of Urinary Extracellular Vesicles Identifies AGP1 as a Potential Biomarker of Primary Aldosteronism
Author(s) -
Eric Barros,
Juan Pablo Rigalli,
Alejandra Tapia-Castillo,
Andrea Vecchiola,
Morag J. Young,
Joost G.J. Hoenderop,
René J.M. Bindels,
Carlos Fardella,
Cristián A. Carvajal
Publication year - 2021
Publication title -
endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 257
eISSN - 1945-7170
pISSN - 0013-7227
DOI - 10.1210/endocr/bqab032
Subject(s) - context (archaeology) , biomarker , urine , extracellular vesicle , urinary system , medicine , creatinine , chemistry , biochemistry , microvesicles , biology , microrna , gene , paleontology
Context Primary aldosteronism (PA) represents 6% to 10% of all essential hypertension patients and is diagnosed using the aldosterone-to-renin ratio (ARR) and confirmatory studies. The complexity of PA diagnosis encourages the identification of novel PA biomarkers. Urinary extracellular vesicles (uEVs) are a potential source of biomarkers, considering that their cargo reflects the content of the parent cell. Objective We aimed to evaluate the proteome of uEVs from PA patients and identify potential biomarker candidates for PA. Methods Second morning spot urine was collected from healthy controls (n = 8) and PA patients (n = 7). The uEVs were isolated by ultracentrifugation and characterized. Proteomic analysis on uEVs was performed using LC-MS Orbitrap. Results Isolated uEVs carried extracellular vesicle markers, showed a round shape and sizes between 50 and 150 nm. The concentration of uEVs showed a direct correlation with urinary creatinine (r = 0.6357; P = 0.0128). The uEV size mean (167 ± 6 vs 183 ± 4nm) and mode (137 ± 7 vs 171 ± 11nm) was significantly smaller in PA patients than in control subjects, but similar in concentration. Proteomic analysis of uEVs from PA patients identified an upregulation of alpha-1-acid glycoprotein 1 (AGP1) in PA uEVs, which was confirmed using immunoblot. A receiver operating characteristic curve analysis showed an area under the curve of 0.92 (0.82 to 1; P = 0.0055). Conclusion Proteomic and further immunoblot analyses of uEVs highlights AGP1 as potential biomarker for PA.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom