z-logo
open-access-imgOpen Access
Murine Fetal Serum Phosphorus is Set Independent of FGF23 and PTH, Except in the Presence of Maternal Phosphate Loading
Author(s) -
K. Berit Sellars,
Brittany A. Ryan,
Sarah A Hartery,
Beth J. Kirby,
Christopher S. Kovacs
Publication year - 2020
Publication title -
endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 257
eISSN - 1945-7170
pISSN - 0013-7227
DOI - 10.1210/endocr/bqaa202
Subject(s) - endocrinology , fetus , medicine , parathyroid hormone , fibroblast growth factor 23 , phosphate , phosphorus , klotho , pregnancy , phosphorus deficiency , biology , chemistry , calcium , kidney , biochemistry , genetics , organic chemistry
Fibroblast growth factor 23 (FGF23) appears to play no role until after birth, given unaltered phosphate and bone metabolism in Fgf23- and Klotho-null fetuses. However, in those studies maternal serum phosphorus was normal. We studied whether maternal phosphate loading alters fetal serum phosphorus and invokes a fetal FGF23 or parathyroid hormone (PTH) response. C57BL/6 wild-type (WT) female mice received low (0.3%), normal (0.7%), or high (1.65%) phosphate diets beginning 1 week prior to mating to WT males. Fgf23+/- female mice received the normal or high-phosphate diets 1 week before mating to Fgf23+/- males. One day before expected birth, we harvested maternal and fetal blood, intact fetuses, placentas, and fetal kidneys. Increasing phosphate intake in WT resulted in progressively higher maternal serum phosphorus and FGF23 during pregnancy, while PTH remained undetectable. Fetal serum phosphorus was independent of the maternal phosphorus and PTH remained low, but FGF23 showed a small nonsignificant increase with high maternal serum phosphorus. There were no differences in fetal ash weight and mineral content, or placental gene expression. High phosphate intake in Fgf23+/- mice also increased maternal serum phosphorus and FGF23, but there was no change in PTH. WT fetuses remained unaffected by maternal high-phosphate intake, while Fgf23-null fetuses became hyperphosphatemic but had no change in PTH, skeletal ash weight or mineral content. In conclusion, fetal phosphate metabolism is generally regulated independently of maternal serum phosphorus and fetal FGF23 or PTH. However, maternal phosphate loading reveals that fetal FGF23 can defend against the development of fetal hyperphosphatemia.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom