z-logo
open-access-imgOpen Access
Enhanced Stromal Cell CBS-H2S Production Promotes Estrogen-Stimulated Human Endometrial Angiogenesis
Author(s) -
Qian-Rong Qi,
Thomas J. Lechuga,
B. Patel,
Nicole Nguyen,
Yihua Yang,
Yan Li,
Sassi Sarnthiyakul,
Quanwei Zhang,
Jin Bai,
Josh Makhoul,
Dongbao Chen
Publication year - 2020
Publication title -
endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 257
eISSN - 1945-7170
pISSN - 0013-7227
DOI - 10.1210/endocr/bqaa176
Subject(s) - angiogenesis , stromal cell , endocrinology , endometrium , medicine , biology , estrogen , chemistry
Angiogenesis is a physiological process for endometrial regeneration in the menstrual cycle and remodeling during pregnancy. Endogenous hydrogen sulfide (H2S), produced by cystathionine-β synthase (CBS) and cystathionine-γ lyase (CSE), is a potent proangiogenic factor; yet, whether the H2S system is expressed in the endometrium and whether H2S plays a role in endometrial angiogenesis are unknown. This study was to test whether estrogens stimulate endometrial H2S biosynthesis to promote endometrial microvascular endothelial cell (EMEC) angiogenesis. CBS messenger RNA/protein and H2S production significantly differed among endometria from postmenopausal (POM), premenopausal secretory (sPRM), and proliferative (pPRM) nonpregnant (NP) and pregnant (Preg) women (P < .05) in a rank order of POM approximately equal to sPRM is less than pPRM is less than Preg, positively correlating with angiogenesis indices and endogenous estrogens and with no difference in CSE expression. CBS and CSE proteins were localized to stroma, glands, and vessels in endometrium, and greater stromal CBS protein was observed in the pPRM and Preg states. Estradiol-17β (E2) (but not progesterone) stimulated CBS (but not CSE) expression and H2S production in pPRM endometrial stromal cells (ESCs) in vitro, which were attenuated by ICI 182 780. The H2S donor sodium hydrosulfide promoted in vitro EMEC angiogenesis. Co-culture with sPRM, pPRM, and Preg ESCs all stimulated EMEC migration with a rank order of sPRM less than pPRM approximately equal to Preg. CBS (but not CSE) inhibition attenuated ESC-stimulated EMEC migration. E2 did not affect EMEC migration but potentiated ESC-stimulated EMEC migration. Altogether, estrogens stimulate specific receptor-dependent stromal CBS-H2S production to promote endometrial EMEC angiogenesis in women.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom