z-logo
open-access-imgOpen Access
ESR1 Mutations Associated With Estrogen Insensitivity Syndrome Change Conformation of Ligand-Receptor Complex and Altered Transcriptome Profile
Author(s) -
Yin Li,
Katherine J. Hamilton,
L. Perera,
Tianyuan Wang,
Artiom Gruzdev,
Tanner B. Jefferson,
Austin X Zhang,
Emilie Mathura,
Kevin Gerrish,
Laura Wharey,
Negin P. Martin,
JianLiang Li,
Kenneth S. Korach
Publication year - 2020
Publication title -
endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 257
eISSN - 1945-7170
pISSN - 0013-7227
DOI - 10.1210/endocr/bqaa050
Subject(s) - estrogen receptor alpha , estrogen receptor , estrogen , biology , transcriptome , endocrinology , estrogen receptor beta , phenotype , mutant , mutation , medicine , genetics , gene , gene expression , cancer , breast cancer
Estrogen insensitivity syndrome (EIS) arises from rare mutations in estrogen receptor-α (ERα, encoded by ESR1 gene) resulting in the inability of estrogen to exert its biological effects. Due to its rarity, mutations in ESR1 gene and the underlying molecular mechanisms of EIS have not been thoroughly studied. Here, we investigate known ESR1 mutants, Q375H and R394H, associated with EIS patients using in vitro and in vivo systems. Comparison of the transcriptome and deoxyribonucleic acid methylome from stable cell lines of both Q375H and R394H clinical mutants shows a differential profile compared with wild-type ERα, resulting in loss of estrogen responsiveness. Molecular dynamic simulation shows that both ESR1 mutations change the ERα conformation of the ligand-receptor complexes. Furthermore, we generated a mouse model Esr1-Q harboring the human mutation using CRISPR/Cas9 genome editing. Female and male Esr1-Q mice are infertile and have similar phenotypes to αERKO mice. Overall phenotypes of the Esr1-Q mice correspond to those observed in the patient with Q375H. Finally, we explore the effects of a synthetic progestogen and a gonadotropin-releasing hormone inhibitor in the Esr1-Q mice for potentially reversing the impaired female reproductive tract function. These findings provide an important basis for understanding the molecular mechanistic consequences associated with EIS.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom