z-logo
open-access-imgOpen Access
Structural Studies of Thyroid Peroxidase Show the Monomer Interacting With Autoantibodies in Thyroid Autoimmune Disease
Author(s) -
Daniel E. Williams,
Sarah N. Le,
David E. Hoke,
Peter G. Chandler,
Monika Góra,
Marlena Godlewska,
J. Paul Banga,
Ashley M. Buckle
Publication year - 2020
Publication title -
endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 257
eISSN - 1945-7170
pISSN - 0013-7227
DOI - 10.1210/endocr/bqaa016
Subject(s) - thyroid peroxidase , autoantibody , ectodomain , epitope , thyroid , thyroglobulin , thyroiditis , chemistry , biochemistry , antigen , immunology , endocrinology , medicine , antibody , receptor
Thyroid peroxidase (TPO) is a critical membrane-bound enzyme involved in the biosynthesis of multiple thyroid hormones, and is a major autoantigen in autoimmune thyroid diseases such as destructive (Hashimoto) thyroiditis. Here we report the biophysical and structural characterization of a novel TPO construct containing only the ectodomain of TPO and lacking the propeptide. The construct was enzymatically active and able to bind the patient-derived TR1.9 autoantibody. Analytical ultracentrifugation data suggest that TPO can exist as both a monomer and a dimer. Combined with negative stain electron microscopy and molecular dynamics simulations, these data show that the TR1.9 autoantibody preferentially binds the TPO monomer, revealing conformational changes that bring together previously disparate residues into a continuous epitope. In addition to providing plausible structural models of a TPO-autoantibody complex, this study provides validated TPO constructs that will facilitate further characterization, and advances our understanding of the structural, functional, and antigenic characteristics of TPO, an autoantigen implicated in some of the most common autoimmune diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom