
Novel Role of Macrophage Migration Inhibitory Factor in Angiotensin II Regulation of Neuromodulation in Rat Brain
Author(s) -
Silke Busche,
Stefan Gallinat,
Melissa A. Fleegal,
Mohan K. Raizada,
Colin Sumners
Publication year - 2001
Publication title -
endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 257
eISSN - 1945-7170
pISSN - 0013-7227
DOI - 10.1210/endo.142.11.8502
Subject(s) - medicine , endocrinology , angiotensin ii , losartan , hypothalamus , biology , receptor , norepinephrine , macrophage migration inhibitory factor , chemistry , cytokine , dopamine
Previously we determined that angiotensin II (Ang II) activates neuronal AT(1) receptors, located in the hypothalamus and the brainstem, to stimulate noradrenergic pathways. To link Ang II to the regulation of norepinephrine metabolism in neurons cultured from newborn rat hypothalamus and brainstem we have used cDNA arrays for high throughput gene expression profiling. Of several genes that were regulated, we focused on macrophage migration inhibitory factor (MIF), which has been associated with the modulation of norepinephrine metabolism. In the presence of the selective AT(2) receptor antagonist PD123,319 (10 microM), incubation of cultures with Ang II (100 nM; 1-24 h) elicited an increase in MIF gene expression. Western immunoblots further revealed that Ang II (100 nM; 1-24 h) increased neuronal MIF protein expression. This effect was inhibited by the AT(1) receptor antagonist losartan (10 microM), the PLC inhibitor U-73122 (10 or 25 microM), the PKC inhibitor chelerythrine (10 microM), and the Ca(2+) chelator 1,2-bis-[2-aminophenoxy]-ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (10 microM). Taken together with our observation that MIF is expressed in the terminal fields of noradrenergic neurons (hypothalamus) and that Ang II increases the expression of MIF in this region in vivo, our data may suggest a novel role of Ang II in norepinephrine metabolism.