Importance of C/EBPβ Binding and Histone Acetylation Status in the Promoter Regions for Induction of IGFBP-1, PRL, and Mn-SOD by cAMP in Human Endometrial Stromal Cells
Author(s) -
Isao Tamura,
Shun Sato,
Maki Okada,
Manabu Tanabe,
Lifa Lee,
Ryo Maekawa,
Hiromi Asada,
Yoshiaki Yamagata,
Hiroshi Tamura,
Norihiro Sugino
Publication year - 2013
Publication title -
endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 257
eISSN - 1945-7170
pISSN - 0013-7227
DOI - 10.1210/en.2013-1569
Subject(s) - decidualization , gene knockdown , chromatin immunoprecipitation , ccaat enhancer binding proteins , histone , biology , microbiology and biotechnology , stromal cell , regulation of gene expression , h3k4me3 , epigenetics , transcription factor , endocrinology , promoter , gene expression , chemistry , medicine , cancer research , gene , nuclear protein , biochemistry
Dynamic changes of gene expressions occur in human endometrial stromal cells (ESCs) during decidualization. CCAAT/enhancer-binding proteinβ (C/EBPβ) regulates the expression of a number of decidualization-related genes. In addition to transcription factors, it is important to know the role of epigenetic mechanisms, such as histone modifications in the regulation of decidualization-related genes. This study investigated the molecular and epigenetic mechanisms by which cAMP up-regulates the expression of IGF-binding protein-1 (IGFBP-1), prolactin (PRL), and manganese superoxide dismutase (Mn-SOD) in ESC. ESCs isolated from proliferative phase endometrium were incubated with cAMP to induce decidualization. IGFBP-1, PRL, and Mn-SOD mRNA expressions were determined by real-time RT-PCR. The C/EBPβ binding and histone modification status (acetylation of histone-H3 lysine-27 [H3K27ac]) in the promoter were examined by chromatin immunoprecipitation assay. Knockdowns of C/EBPβ were performed using the small interfering RNA method. cAMP induced mRNA expressions of IGFBP-1 and PRL accompanied by the increases in both C/EBPβ binding activities and H3K27ac levels in the promoters. The stimulatory effects of cAMP on mRNA levels and H3K27ac levels were completely abolished by C/EBPβ knockdown. cAMP increased Mn-SOD mRNA levels and C/EBPβ binding activities in the enhancer region. C/EBPβ knockdown inhibited Mn-SOD mRNA levels. The H3K27ac levels in the enhancer were high before cAMP stimulus but were not further increased by cAMP and were not inhibited by C/EBPβ knockdown. These results show that C/EBPβ regulates the expression of IGFBP-1 and PRL by altering the histone acetylation status of their promoters but differently regulates Mn-SOD gene expression in human ESC during decidualization.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom