
Minireview: Steroid Receptor Coactivator-3: A Multifarious Coregulator in Mammary Gland Metastasis
Author(s) -
John P. Lydon,
Bert W. O’Malley
Publication year - 2011
Publication title -
endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 257
eISSN - 1945-7170
pISSN - 0013-7227
DOI - 10.1210/en.2010-1012
Subject(s) - biology , cancer research , proto oncogene tyrosine protein kinase src , nuclear receptor coactivator 3 , microbiology and biotechnology , signal transduction , metastasis , coactivator , medicine , endocrinology , cancer , transcription factor , genetics , gene , biochemistry
A member of the steroid receptor coactivator (SRC)/p160 family, SRC-3 acts as a coregulator for nuclear receptor (NR) and non-NR transcription factors. Such coregulator pleiotropy enables SRC-3 to influence a myriad of signaling networks that are essential for normal physiology and pathophysiology. Although SRC-3's proliferative role in primary tumor formation in the mammary gland is well established, a role for this oncogenic coregulator in tumor cell motility and invasion has only recently been elucidated. In the nucleus, SRC-3 is required for the execution of the epithelial-mesenchymal transition, a programming step which endows an immotile cancer cell with motile and invasive characteristics. Nuclear SRC-3 is also essential for proteolytic breakdown of the extracellular matrix by matrix-metalloproteinases, a process which enables primary tumor cell invasion into the surrounding stroma. At the plasma membrane, however, a truncated isoform of SRC-3 (SRC-3Δ4) serves as a signaling adaptor for the epidermal growth factor→focal adhesion kinase→c-Src signal transduction pathway, a signaling cascade that is central to growth factor-induced cell migration and invasion. Together, these studies underscore a pivotal role for SRC-3 not only as a proto-oncogene but also as a prometastatic factor during the early steps in the invasion-metastasis cascade. Beyond furnishing critical mechanistic insights into SRC-3's involvement in mammary tumor progression, these findings provide opportunities to develop new approaches for breast cancer diagnosis and intervention.