z-logo
open-access-imgOpen Access
Studies in Mice Deficient for the Autoimmune Regulator (Aire) and Transgenic for the Thyrotropin Receptor Reveal a Role for Aire in Tolerance for Thyroid Autoantigens
Author(s) -
Alexander V. Misharin,
Yuji Nagayama,
Holly A. Aliesky,
Basil Rapoport,
Sandra M. McLachlan
Publication year - 2009
Publication title -
endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 257
eISSN - 1945-7170
pISSN - 0013-7227
DOI - 10.1210/en.2008-1690
Subject(s) - thyrotropin receptor , autoimmune regulator , thyroglobulin , medicine , endocrinology , autoimmunity , thyroid peroxidase , graves' disease , transgene , central tolerance , thyroid , receptor , genetically modified mouse , immunology , antibody , biology , gene , biochemistry
The autoimmune regulator (Aire) mediates central tolerance for many autoantigens, and autoimmunity occurs spontaneously in Aire-deficient humans and mice. Using a mouse model of Graves' disease, we investigated the role of Aire in tolerance to the TSH receptor (TSHR) in Aire-deficient and wild-type mice (hyperthyroid-susceptible BALB/c background). Mice were immunized three times with TSHR A-subunit expressing adenovirus. The lack of Aire did not influence T-cell responses to TSHR protein or TSHR peptides. However, antibody levels were higher in Aire-deficient than wild-type mice after the second (but not the third) immunization. After the third immunization, hyperthyroidism persisted in a higher proportion of Aire-deficient than wild-type mice. Aire-deficient mice were crossed with transgenic strains expressing high or low-intrathyroidal levels of human TSHR A subunits. In the low-expressor transgenics, Aire deficiency had the same effect on the pattern of the TSHR antibody response to immunization as in nontransgenics, although the amplitude of the response was lower in the transgenics. High-expressor A-subunit transgenics were unresponsive to immunization. We examined intrathymic expression of murine TSHR, thyroglobulin, and thyroid peroxidase (TPO), the latter two being the dominant autoantigens in Hashimoto's thyroiditis (particularly TPO). Expression of the TSHR and thyroglobulin were reduced in the absence of Aire. Dramatically, thymic expression of TPO was nearly abolished. In contrast, the human A-subunit transgene, lacking a potential Aire-binding motif, was unaffected. Our findings provide insight into how varying intrathymic autoantigen expression may modulate thyroid autoimmunity and suggest that Aire deficiency may contribute more to developing Hashimoto's thyroiditis than Graves' disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here