
Germline CDKN1B Loss-of-Function Variants Cause Pediatric Cushing’s Disease With or Without an MEN4 Phenotype
Author(s) -
Fanny Chasseloup,
Nathan Pankratz,
John Lane,
Fábio R. Faucz,
Margaret F. Keil,
Prashant Chittiboina,
Denise M. Kay,
Tara Hussein Tayeb,
Constantine A. Stratakis,
James L. Mills,
Laura C. HernándezRamírez
Publication year - 2020
Publication title -
the journal of clinical endocrinology and metabolism
Language(s) - English
Resource type - Journals
eISSN - 1945-7197
pISSN - 0021-972X
DOI - 10.1210/clinem/dgaa160
Subject(s) - germline , sanger sequencing , biology , genetics , pten , proband , exome sequencing , missense mutation , loss function , cancer research , phenotype , gene , mutation , apoptosis , pi3k/akt/mtor pathway
Context Germline loss-of-function CDKN1B gene variants cause the autosomal dominant syndrome of multiple endocrine neoplasia type 4 (MEN4). Even though pituitary neuroendocrine tumors are a well-known component of the syndrome, only 2 cases of Cushing’s disease (CD) have so far been described in this setting. Aim To screen a large cohort of CD patients for CDKN1B gene defects and to determine their functional effects. Patients We screened 211 CD patients (94.3% pediatric) by germline whole-exome sequencing (WES) only (n = 157), germline and tumor WES (n = 27), Sanger sequencing (n = 6), and/or germline copy number variant (CNV) analysis (n = 194). Sixty cases were previously unpublished. Variant segregation was investigated in the patients’ families, and putative pathogenic variants were functionally characterized. Results Five variants of interest were found in 1 patient each: 1 truncating (p.Q107Rfs*12) and 4 nontruncating variants, including 3 missense changes affecting the CDKN1B protein scatter domain (p.I119T, p.E126Q, and p.D136G) and one 5’ untranslated region (UTR) deletion (c.-29_-26delAGAG). No CNVs were found. All cases presented early (10.5 ± 1.3 years) and apparently sporadically. Aside from colon adenocarcinoma in 1 carrier, no additional neoplasms were detected in the probands or their families. In vitro assays demonstrated protein instability and disruption of the scatter domain of CDKN1B for all variants tested. Conclusions Five patients with CD and germline CDKN1B variants of uncertain significance (n = 2) or pathogenic/likely pathogenic (n = 3) were identified, accounting for 2.6% of the patients screened. Our finding that germline CDKN1B loss-of-function may present as apparently sporadic, isolated pediatric CD has important implications for clinical screening and genetic counselling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom