z-logo
open-access-imgOpen Access
GLOBAL DYNAMICS OF A POPULATION MODEL FROM RIVER ECOLOGY
Author(s) -
Keyu Li,
Fangfang Xu
Publication year - 2020
Publication title -
journal of applied analysis and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.55
H-Index - 21
eISSN - 2158-5644
pISSN - 2156-907X
DOI - 10.11948/20200081
Subject(s) - biological dispersal , ecology , theoretical ecology , population , dynamics (music) , mathematics , biology , physics , demography , sociology , acoustics
In this paper, we investigate the population dynamics of a twospecies Lotka-Volterra competition system arising in river ecology. An interesting feature of this modeling system lies in the boundary conditions at the downstream end, where the populations may be exposed to differing magnitudes of loss of individuals. By applying the theory of principal eigenvalue and monotone dynamical systems, we obtain a complete understanding on the global dynamics, which suggests that slower dispersal is selected for. Our results can be seen as a further development of a recent work by Tang and Chen (J. Differential Equations, 2020, 2020(269), 1465–1483).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom