HOMOCLINIC SOLUTIONS FOR FOURTH ORDER DIFFERENTIAL EQUATIONS WITH SUPERLINEAR NONLINEARITIES
Author(s) -
Ziheng Zhang,
Zhisu Liu
Publication year - 2018
Publication title -
journal of applied analysis and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.55
H-Index - 21
eISSN - 2158-5644
pISSN - 2156-907X
DOI - 10.11948/2018.66
Subject(s) - homoclinic orbit , mathematics , mathematical analysis , order (exchange) , nonlinear system , physics , bifurcation , economics , finance , quantum mechanics
In this paper we investigate the existence of homoclinic solutions for a class of fourth order differential equations with superlinear nonlinearities. Under some superlinear conditions weaker than the well-known (AR) condition, by using the variant fountain theorem, we establish one new criterion to guarantee the existence of infinitely many homoclinic solutions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom