z-logo
open-access-imgOpen Access
THEORY AND COMPUTATION FOR MULTIPLE POSITIVE SOLUTIONS OF NON-LOCAL PROBLEMS AT RESONANCE
Author(s) -
Adela Novac,
Radu Precup
Publication year - 2018
Publication title -
journal of applied analysis and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.55
H-Index - 21
eISSN - 2158-5644
pISSN - 2156-907X
DOI - 10.11948/2018.486
Subject(s) - computation , mathematics , resonance (particle physics) , boundary value problem , mathematical analysis , boundary (topology) , physics , algorithm , particle physics
Resonance non-positone and non-isotone problems for first order differential systems subjected to non-local boundary conditions are reduced to the non-resonance positone and isotone case by changes of variables. This allows us to prove the existence of multiple positive solutions. The theory is illustrated by two examples for which three positive numerical solutions are obtained using the Mathematica shooting program.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom