MINIMIZERS FOR THE EMBEDDING OF BESOV SPACES
Author(s) -
Mingjuan Chen
Publication year - 2017
Publication title -
journal of applied analysis and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.55
H-Index - 21
eISSN - 2158-5644
pISSN - 2156-907X
DOI - 10.11948/2017100
Subject(s) - combinatorics , besov space , physics , mathematics , interpolation space , functional analysis , biochemistry , chemistry , gene
Using the profile decomposition, we will show the relatively compactness of the minimizing sequence to the critical embeddings between Besov spaces, which implies the existence of minimizer of the critical embeddings of Besov spaces Ḃ1 p1,q1 ↪→ Ḃ s2 p2,q2 in d dimensions with s1 − d/p1 = s2 − d/p2, s1 > s2 and 1 ≤ q1 < q2 ≤ ∞. Moreover, we establish the nonexistence of the minimizer in the case Ḃ1 p1,q ↪→ Ḃ s2 p2,q.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom