z-logo
open-access-imgOpen Access
HAMILTONIAN SYSTEMS WITH POSITIVE TOPOLOGICAL ENTROPY AND CONJUGATE POINTS
Author(s) -
Fei Liu,
Zhiyu Wang,
Fang Wang
Publication year - 2015
Publication title -
journal of applied analysis and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.55
H-Index - 21
eISSN - 2158-5644
pISSN - 2156-907X
DOI - 10.11948/2015038
Subject(s) - conjugate points , riemannian manifold , manifold (fluid mechanics) , mathematics , physics , combinatorics , geodesic , torus , pure mathematics , mathematical analysis , geometry , mechanical engineering , engineering
In this article, we consider the geodesic flows induced by the natural Hamiltonian systems $H(x,p)=\frac{1}{2}g^{ij}(x) p_{i}p_{j} + V(x) $  defined on a smooth Riemannian manifold$(M = \mathbb{S}^{1} \times N, g)$, where $\mathbb {S}^{1}$ is the one dimensional torus, N is a compact manifold, g is the Riemannian metric on M and V is a potential function satisfying $V \leq 0$. We prove that under suitable conditions, if the fundamental group $\pi_{1}(N)$ has sub-exponential growth rate, then the Riemannian manifold M with the Jacobi metric $(h-V)g$, i.e., $(M, (h-V)g)$, is a manifold with conjugate points for all h with $0 < h <\delta$, where $\delta$ is a small number.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom