A GLOBAL SUPERCONVERGENT <i>L</i><sup>∞</sup>-ERROR ESTIMATE OF MIXED FINITE ELEMENT METHODS FOR SEMILINEAR ELLIPTIC OPTIMAL CONTROL PROBLEMS
Author(s) -
Li Li
Publication year - 2015
Publication title -
journal of applied analysis and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.55
H-Index - 21
eISSN - 2158-5644
pISSN - 2156-907X
DOI - 10.11948/2015028
Subject(s) - superconvergence , mathematics , piecewise , finite element method , norm (philosophy) , optimal control , projection (relational algebra) , mathematical analysis , physics , mathematical optimization , algorithm , political science , law , thermodynamics
In this paper, we discuss the superconvergence of mixed finite element methods for a semilinear elliptic control problem with an integral constraint. The state and costate are approximated by the order $k=1$ Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximation of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that this approximation has convergence order $h^{2}$ in $L^{\infty}$-norm. Finally, a numerical example is given to demonstrate the theoretical results.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom