z-logo
open-access-imgOpen Access
THE HILBERT NUMBER OF A CLASS OF DIFFERENTIAL EQUATIONS
Author(s) -
Jaume Llibre,
Ammar Makhlouf
Publication year - 2015
Publication title -
journal of applied analysis and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.55
H-Index - 21
eISSN - 2158-5644
pISSN - 2156-907X
DOI - 10.11948/2015012
Subject(s) - mathematics , degree (music) , differential equation , mathematical analysis , infimum and supremum , combinatorics , polynomial , pure mathematics , physics , acoustics
The notion of Hilbert number from polynomial differential systems in the plane of degree $n$ can be extended to the differential equations of the form \[\dfrac{dr}{d\theta}=\dfrac{a(\theta)}{\displaystyle \sum_{j=0}^{n}a_{j}(\theta)r^{j}} \eqno(*)\] defined in the region of the cylinder $(\tt,r)\in \Ss^1\times \R$ where the denominator of $(*)$ does not vanish. Here $a, a_0, a_1, \ldots, a_n$ are analytic $2\pi$--periodic functions, and the Hilbert number $\HHH(n)$ is the supremum of the number of limit cycles that any differential equation  $(*)$ on the cylinder of degree $n$ in the variable $r$ can have. We prove that $\HHH(n)= \infty$ for all $n\ge 1$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom