ENTROPY SOLUTIONS TO NONLINEAR ELLIPTIC ANISOTROPIC PROBLEM WITH VARIABLE EXPONENT
Author(s) -
Benboubker Mohamed Badr,
Hjiaj Hassan,
Stanislas Ouaro
Publication year - 2014
Publication title -
journal of applied analysis and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.55
H-Index - 21
eISSN - 2158-5644
pISSN - 2156-907X
DOI - 10.11948/2014012
Subject(s) - physics , exponent , mathematical physics , nonlinear system , mathematics , combinatorics , mathematical analysis , quantum mechanics , philosophy , linguistics
In this work, we give an existence result of entropy solutions for nonlinear anisotropic elliptic equation of the type $$- \mbox{div} \big( a(x,u,\nabla u)\big)+ g(x,u,\nabla u) + |u|^{p_{0}(x)-2}u = f-\mbox{div} \phi(u),\quad \mbox{ in } \Omega,$$ where $-\mbox{div}\big(a(x,u,\nabla u)\big)$ is a Leray-Lions operator, $\phi \in C^{0}(I\!\!R,I\!\!R^{N})$. The function $g(x,u,\nabla u)$ is a nonlinear lower order term with natural growth with respect to $|\nabla u|$, satisfying the sign condition and the datum $f$ belongs to $L^1(\Omega)$.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom