EVANS FUNCTIONS AND BIFURCATIONS OF STANDING WAVE SOLUTIONS IN DELAYED SYNAPTICALLY COUPLED NEURONAL NETWORKS
Author(s) -
Linghai Zhang
Publication year - 2012
Publication title -
journal of applied analysis and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.55
H-Index - 21
eISSN - 2158-5644
pISSN - 2156-907X
DOI - 10.11948/2012016
Subject(s) - standing wave , nonlinear system , mathematics , scalar (mathematics) , mathematical analysis , differential equation , partial differential equation , physics , geometry , quantum mechanics , optics
Consider the following nonlinear singularly perturbed system of integral differential equations &\frac{\partial u}{\partial t}+f(u)+w\\ =&(\alpha-au)\int^{\infty}_0\xi(c)\left[\int_{\mathbb R}K(x-y) H\left(u\left(y,t-\frac1c|x-y|\right)-\theta\right){\rm d}y\right]{\rm d}c\\ &+(\beta-bu)\int^{\infty}_0\eta(\tau)\left[\int_{\mathbb R}W(x-y)H\big(u(y,t-\tau)-\Theta\big){\rm d}y\right]{\rm d}\tau,\\ &\frac{\partial w}{\partial t}=\varepsilon[g(u)-w], and the scalar integral differential equation &\frac{\partial u}{\partial t}+f(u)\\ =&(\alpha-a u)\int^{\infty}_0\xi(c)\left[\int_{\mathbb R}K(x-y) H\left(u\left(y,t-\frac1c|x-y|\right)-\theta\right){\rm d}y\right]{\rm d}c\\ &+(\beta-bu)\int^{\infty}_0\eta(\tau)\left[\int_{\mathbb R}W(x-y)H\big(u(y,t-\tau)-\Theta\big){\rm d}y\right]{\rm d}\tau. There exist standing wave solutions to the nonlinear system. Similarly, there exist standing wave solutions to the scalar equation. The author constructs Evans functions to establish stability of the standing wave solutions of the scalar equation and to establish bifurcations of the standing wave solutions of the nonlinear system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom