z-logo
open-access-imgOpen Access
Seismoelectric interface response: Experimental results and forward model
Author(s) -
Menne Schakel,
David Smeulders,
Evert Slob,
H. K. J. Heller
Publication year - 2011
Publication title -
geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.178
H-Index - 172
eISSN - 1942-2156
pISSN - 0016-8033
DOI - 10.1190/1.3592984
Subject(s) - electrokinetic phenomena , amplitude , waveform , electric field , acoustics , scaling , regional geology , perpendicular , optics , mechanics , computational physics , geology , physics , materials science , voltage , geometry , geotechnical engineering , mathematics , hydrogeology , metamorphic petrology , quantum mechanics , nanotechnology
Understanding the seismoelectric interface response is important for developing seismoelectric field methods for oil exploration and environmental/engineering geophysics. The existing seismoelectric theory has never been validated systematically by controlled experiments. We have designed and developed an experimental setup in which acoustic-to-electromagnetic wave conversions at interfaces are measured. An acoustic source emits a pressure wave that impinges upon a porous sample. The reflected electric-wave potential is recorded by a wire electrode. We have also developed a full-waveform electrokinetic theoretical model based on the Sommerfeld approach and have compared it with measurements at positions perpendicular and parallel to the fluid/porous-medium interface. We performed experiments at several salinities. For 10-3 and 10-2 M sodium chloride (NaCl) solutions, both waveforms and amplitudes agree. For 10-4 M NaCl, however, amplitude deviations occur. We found that a single amplitude field scaling factor describes these discrepancies. We also checked the repeatability of experiments. The amplitudes are constant for the duration of an experiment (1–4 hours) but decrease on longer time scales (~24 hours). However, the waveforms and spatial amplitude pattern of the electric wavefield are preserved over time. Our results validate electrokinetic theory for the seismic-to-electromagnetic-wave conversion at interfaces for subsurface exploration purposes

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom