
Knee biomechanics changes under dual task during single‐leg drop landing
Author(s) -
Kajiwara Masaya,
Kanamori Akihiro,
Kadone Hideki,
Endo Yusuke,
Kobayashi Yasuto,
Hyodo Kojiro,
Takahashi Tatsuya,
Arai Norihito,
Taniguchi Yu,
Yoshioka Tomokazu,
Yamazaki Masashi
Publication year - 2019
Publication title -
journal of experimental orthopaedics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.597
H-Index - 18
ISSN - 2197-1153
DOI - 10.1186/s40634-019-0170-z
Subject(s) - biomechanics , sports biomechanics , dual (grammatical number) , physical medicine and rehabilitation , orthopedic surgery , drop (telecommunication) , sports medicine , medicine , engineering , physical therapy , anatomy , simulation , surgery , mechanical engineering , philosophy , linguistics
Background Approximately 70% of anterior cruciate ligament (ACL) ruptures occur during single foot contact in sport (Boden et al. 2009; Olsen et al. 2004). Cohort studies that evaluated biomechanics during a vertical drop jump (VDJ) reported that this task could be used to screen for the risk of ACL rupture in athletes (Goetschius et al. 2012; Hewett et al. 2005; Padua et al. 2015). However, other studies found that exercise load from VDJ is too small to provide adequate assessment (Krosshaug et al. 2016; Reinschmidt et al. 1997). A variety of other assessment methods have been studied. Most three-dimensional motion analyses after ACL reconstruction have used low exercise load methods, such as gait or VDJ analyses, which are very easy for athletes who have returned to regular sports (Hall et al. 2012; Hooper et al. 2002; Ortiz et al. 2014). Single-leg drop landing (SDL) is an assessment method with greater exercise load than VDJ, and studies comparing the two tasks found that knee load is significantly greater with SDL (Earl et al. 2007; Harty et al. 2011; Nagano et al. 2009; Pappas et al. 2007; Taylor et al. 2016), indicating that it is more suitable for examination of athletes. Studies found that knee kinematics do not differ significantly when healthy athletes perform SDL as a single task compared with VDJ (Ford et al. 2006; Wang 2011), suggesting that simply increasing exercise load is not sufficient to disturb the athlete balance and investigate knee biomechanics under conditions resembling competition; increasing the difficulty of the motion is also necessary. In sports where ACL ruptures are common, such as basketball, handball, and soccer, athletes almost never decide their motion in advance, but are constantly moving in response to intense external disturbances, such as obstruction by opponents (Boden et al. 2000; Boden et al. 2009). Studies have used non-predictive tasks to take this into consideration, but most used low exercise load cutting motions or VDJ, and none performed SDL (Beaulieu et al. 2009; Besier et al. 2001; Herman and Barth 2016; Houck et al. 2006; Landry et al. 2007). These studies showed that subjects had a disturbed balance because non-predictive tasks extended the decision time and reduced preparation time for motion, changing kinematics. A dual task adds a neurocognitive load (via a cognitive task) to an exercise task, increasing the reaction time compared with a single task (Bekkering et al. 1994). Increasing reaction time also reduces preparation time for motion, and may be the reason for the disturbed balance of the athletes. Therefore, the purpose of this study was to assess knee biomechanics among athletes during SDL under a dual task. The hypothesis of this study was that the maximum knee flexion angle, knee valgus angle, tibial internal rotation angle and anterior tibial translation and peak ground reaction force (GRF) during a dual task was larger than that of a single task during SDL.