
Functional glyco-metagenomics elucidates the role of glycan-related genes in environments
Author(s) -
Hayato Takihara,
Nobuaki Miura,
Kiyoko F. AokiKinoshita,
Shujiro Okuda
Publication year - 2021
Publication title -
bmc bioinformatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.567
H-Index - 208
ISSN - 1471-2105
DOI - 10.1186/s12859-021-04425-9
Subject(s) - glycan , metagenomics , gene , glycosyltransferase , biology , microbiome , genome , dna microarray , computational biology , glycoside hydrolase , enzyme , biochemistry , genetics , gene expression , glycoprotein
Background Glycan-related genes play a fundamental role in various processes for energy acquisition and homeostasis maintenance while adapting to the environment in which the organism exists; however, their role in the microbiome in the environment is unclear. Methods Sequence alignment was performed between known glycan-related genes and complete genomes of microorganisms, and optimal parameters for identifying glycan-related genes were determined based on the alignments. Using the constructed scheme (> 90% of identity and > 25 aa of alignment length), glycan-related genes in various environments were identified from 198 different metagenome data. Results As a result, we identified 86.73 million glycan-related genes from the metagenome data. Among the 12 environments classified in this study, the percentage of glycan-related genes was high in the human-associated environment, suggesting that these environments utilize glycan metabolism better than other environments. On the other hand, the relative abundances of both glycoside hydrolases and glycosyltransferases surprisingly had a coverage of over 80% in all the environments. These glycoside hydrolases and glycosyltransferases were classified into two groups of (1) general enzyme families identified in various environments and (2) specific enzymes found only in certain environments. The general enzyme families were mostly from genes involved in monosaccharide metabolism, and most of the specific enzymes were polysaccharide degrading enzymes. Conclusion These findings suggest that environmental microorganisms could change the composition of their glycan-related genes to adapt the processes involved in acquiring energy from glycans in their environments. Our functional glyco-metagenomics approach has made it possible to clarify the relationship between the environment and genes from the perspective of carbohydrates, and the existence of glycan-related genes that exist specifically in the environment. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04425-9.