z-logo
open-access-imgOpen Access
Lymphoid differentiation of the hematopoietic stem cell that reconstitutes total erythropoiesis of a genetically anemic W/Wv mouse
Author(s) -
Toru Nakano,
N Waki,
Hideyo Asai,
Y Kitamura
Publication year - 1989
Publication title -
blood
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.515
H-Index - 465
eISSN - 1528-0020
pISSN - 0006-4971
DOI - 10.1182/blood.v73.5.1175.1175
Subject(s) - phosphoglycerate kinase , erythropoiesis , biology , haematopoiesis , stem cell , microbiology and biotechnology , bone marrow , immunology , genetics , medicine , gene , anemia
We investigated whether the stem cell that reconstitutes total erythropoiesis of a WBB6F1-W/Wv mouse differentiates into lymphoid lineage. The electrophoretic pattern of hemoglobin was used as a marker of the reconstitution; 3-phosphoglycerate kinase (PGK), an X chromosome-linked enzyme was used as a tool for estimating clonality. We injected 10(5) bone marrow cells of 5-FU treated C57BL/6-Pgk-1b/Pgk-1a female mice, in which each stem cell had either A-type PGK or B-type PGK due to random inactivation of one of two X chromosomes, into genetically anemic (WB x C57BL/6)F1-W/Wv (hereafter WBB6F1-W/Wv) mice that contained only B-type PGK. The recipient WBB6F1-W/Wv mice, in which erythropoiesis was reconstituted with donor cells for a long term, were killed and the PGK patterns of bone marrows, thymus, lymph nodes, and Peyer's patches were examined. A considerable amount of A-type PGK was detected in the lymphoid organs of the WBB6F1-W/Wv mice in which erythrocytes showed only A-type PGK when killed. In contrast, A-type PGK was scarcely detectable in the lymphoid organs of the WBB6F1-W/Wv mice in which erythrocytes showed only B-type PGK when killed. The present results suggest that the hematopoietic stem cells estimated by the erythropoiesis reconstituting assay differentiate into lymphoid lineage and that the long-term erythropoiesis reconstitution assay is useful for detecting the true primitive hematopoietic stem cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom