Myelodysplastic syndromes
Author(s) -
Stephen D. Nimer
Publication year - 2008
Publication title -
blood
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.515
H-Index - 465
eISSN - 1528-0020
pISSN - 0006-4971
DOI - 10.1182/blood-2007-08-078139
Subject(s) - myelodysplastic syndromes , bone marrow , medicine , progenitor cell , stem cell , disease , immunology , cancer research , bioinformatics , biology , pathology , genetics
There has been a remarkable explosion of knowledge into the molecular defects that underlie the acute and chronic leukemias, leading to the introduction of targeted therapies that can block key cellular events essential for the viability of the leukemic cell. Our understanding of the pathogenesis of the myelodysplastic syndromes (MDSs) has lagged behind, at least in part, because they represent a more heterogeneous group of disorders. The significant immunologic abnormalities described in this disease, coupled with the admixture of MDS stem or progenitor cells within the myriad types of dysplastic and normal cells in the bone marrow and peripheral blood, have made it difficult to molecularly characterize and model MDS. The recent availability of several, effective (ie, FDA-approved) therapies for MDS and newly described mouse models that mimic aspects of the human disease provide an opportune moment to try to leverage this new knowledge into a better understanding of and better therapies for MDS.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom