A New Angle on Object-Background Effects in Vection
Author(s) -
Juno Kim,
Michael Tran
Publication year - 2016
Publication title -
i-perception
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 26
ISSN - 2041-6695
DOI - 10.1177/2041669516631695
Subject(s) - observer (physics) , computer vision , perception , rotation (mathematics) , motion (physics) , artificial intelligence , motion perception , object (grammar) , optical flow , rotation around a fixed axis , computer science , coherence (philosophical gambling strategy) , psychology , physics , communication , classical mechanics , quantum mechanics , neuroscience , image (mathematics)
We considered whether optic flow generated by 3D relief of a foreground surface might influence visually-mediated self-motion perception (vection). We generated background motion consistent with self-rotation, and a foreground object with bumpy relief was either rotated with the observer (ego-centric) or fixed in world coordinates (world-centric). We found that vection strength ratings were greater in conditions with world-centric retinal motion of the foreground object, despite generating flow that was opposite to background motion. This effect was explained by observer judgments of the axis self-rotation in depth; whereas ego-centric flow generated experiences of more on-axis self-rotation, world-centric flow generated experiences of centrifugal rotation around the foreground object. These data suggest that foreground object motion can increase the perception of self-motion generated by optic flow, even when they reduce net retinal motion coherence and promote conditions for multisensory conflict. This finding supports the view that self-motion perception depends on mid-level representations of whole-scene motion.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom