z-logo
open-access-imgOpen Access
Tripeptidyl Peptidase II Is Required for c-MYC-Induced Centriole Overduplication and a Novel Therapeutic Target in c-MYC-Associated Neoplasms
Author(s) -
Stefan Duensing,
Sebastian Darr,
Rolando Cuevas,
Nadja Melquiot,
Anthony G. Brickner,
Anette Duensing,
Karl Münger
Publication year - 2010
Publication title -
genes and cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.883
H-Index - 71
eISSN - 1947-6027
pISSN - 1947-6019
DOI - 10.1177/1947601910389605
Subject(s) - centriole , centrosome , biology , gene knockdown , microbiology and biotechnology , cancer research , programmed cell death , oncogene , microtubule , cell , cell cycle , genetics , cell culture , apoptosis
Centrosome aberrations are frequently detected in c-MYC-associated human malignancies. Here, we show that c-MYC-induced centrosome and centriole overduplication critically depend on the protease tripeptidyl peptidase II (TPPII). We found that TPPII localizes to centrosomes and that overexpression of TPPII, similar to c-MYC, can disrupt centriole duplication control and cause centriole multiplication, a process during which maternal centrioles nucleate the formation of more than a single daughter centriole. We report that inactivation of TPPII using chemical inhibitors or siRNA-mediated protein knockdown effectively reduced c-MYC-induced centriole overduplication. Remarkably, the potent and selective TPPII inhibitor butabindide not only potently suppressed centriole aberrations but also caused significant cell death and growth suppression in aggressive human Burkitt lymphoma cells with c-MYC overexpression. Taken together, these results highlight the role of TPPII in c-MYC-induced centriole overduplication and encourage further studies to explore TPPII as a novel antineoplastic drug target.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom