
The Mangrove-Derived Diterpenoid Diaporthe B Inhibits the Stemness and Increases the Efficacy of Docetaxel in Prostate Cancer PC-3 Cells
Author(s) -
Yao Xu,
Zhiwei Zhong,
Yuanzhu Gao,
Wang Yu-hui,
Lanyue Zhang,
Huarong Huang,
Junxia Zheng,
Kun Zhang,
Xi Zheng,
Susan Goodin
Publication year - 2021
Publication title -
natural product communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.221
H-Index - 44
eISSN - 1934-578X
pISSN - 1555-9475
DOI - 10.1177/1934578x211049688
Subject(s) - docetaxel , prostate cancer , cd44 , cancer stem cell , cancer research , cancer cell , cancer , medicine , oncology , biology , chemistry , cell , biochemistry
The absolute configuration of diaporthe B, a pimarane diterpene isolated from the mangrove derived endophytic fungus Eutypella sp #3E, was determined by a single-crystal x-ray diffraction study. The present study aimed to investigate the effects of diaporthe B on docetaxel-resistant prostate cancer PC-3 cells. Results of our studies showed that docetaxel-resistant PC-3 cells had higher sphere-forming efficiency and an increase in adherence to collagen-coated culture plates. The protein levels of cancer stem cell (CSC)-related markers CD44, CD133, and ALDH1A1 were higher in the docetaxel-resistant PC-3 cells than in the parental cells. Treatment with diaporthe B dose-dependently inhibited the growth and induced apoptosis in the resistant cells. Moreover, diaporthe B treatment decreased the sphere-forming efficiency and the adherence to collagen-coated plates in docetaxel-resistant PC-3 cells. Diaporthe B also decreased the protein levels of CSC-related markers CD44, CD133, and ALDH1A1 in the resistant cells. In addition, a combination of diaporthe B and docetaxel had a more potent effect on growth inhibition and apoptosis in the resistant cells than either agent alone. Our studies suggest that diaporthe B inhibits the stemness of prostate cancer cells and may have therapeutic potential for enhancing the efficacy of docetaxel in docetaxel-resistant prostate cancer cells.