z-logo
open-access-imgOpen Access
Contributions of Mathematical Modeling of Beta Cells to the Understanding of Beta-Cell Oscillations and Insulin Secretion
Author(s) -
Morten Gram Pedersen
Publication year - 2009
Publication title -
journal of diabetes science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.039
H-Index - 75
eISSN - 1932-3107
pISSN - 1932-2968
DOI - 10.1177/193229680900300103
Subject(s) - bursting , beta cell , insulin , beta (programming language) , neuroscience , pancreatic islets , cell , coupling (piping) , biology , cyclic adenosine monophosphate , secretion , endocrinology , computer science , islet , receptor , biochemistry , engineering , mechanical engineering , programming language
Mathematical modeling of pancreatic beta cells has contributed significantly to the understanding of the mechanisms involved in glucose-stimulated insulin secretion (GSIS). Early models of insulin secretion built in the 1970s were phenomenological with little biological foundation for the proposed mechanisms. In the 1980s, models focused on identifying the regulation of bursting electrical activity known to be important for insulin secretion. The main result was to reject proposed mechanisms as new data emerged, but important results of the role of cell-to-cell coupling were also established. New models have been proposed that provide possible explanations for the occurrence of various patterns of bursting and calcium oscillations. In addition, modeling has played an important role in comparing competing effects of calcium on both NADH and adenosine 3'-5'-cyclic monophosphate levels. Models including modern cell biological results of the regulation of insulin containing granules and cell heterogeneity have appeared, providing updated versions of the early models proposed in the 1970s. These models, when coupled to electrophysiological- and calcium-based ones, have the prospect to aid in understanding the overall picture of GSIS. In addition, they might be useful for estimating in vivo beta-cell functioning. Beta-cell modeling will likely move closer to clinical applications, where it can be expected to play an important role, as it has and will, in understanding the complex oscillatory phenomena observed in beta cells and islets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom