z-logo
open-access-imgOpen Access
HUMAN AMYLOID PROTEIN: CHEMICAL VARIABILITY AND HOMOGENEITY
Author(s) -
Minoru Harada,
Chaviva Isersky,
Pedro Cuatrecasas,
David Page,
Howard A. Bladen,
E. D. Eanes,
Harry R. Keiser,
G. G. Glenner
Publication year - 1971
Publication title -
journal of histochemistry and cytochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.971
H-Index - 124
eISSN - 1551-5044
pISSN - 0022-1554
DOI - 10.1177/19.1.1
Subject(s) - chemistry , amyloid (mycology) , biochemistry , amino acid , sephadex , tryptophan , peptide , hydroxyproline , protein primary structure , amyloidosis , peptide sequence , enzyme , medicine , inorganic chemistry , pathology , gene
The morphology of the fibril of amyloid derived from different individuals is similar, but occasionally significant differences are noted. All human amyloid filaments have a "β-pleated sheet" conformation as revealed by x-ray diffraction, and those examined after orientation show a "cross-β" pattern. All amyloid fibril concentrates studied so far can be fractionated to obtain the major amyloid protein component(s) by sequential gel filtration with 5 M guanidine-HCl in 1 N acetic acid on Sepharose 4B and Sephadex G-100 or G-75 columns with the removal of over 28% of proteins representing minor constituents. The major amyloid protein(s) obtained from the spleen and/or liver of six patients is found to contain tryptophan, to be deficient in hydroxylysine and hydroxyproline and usually at least one commonly occurring amino acid and to have a high content of dicarboxylic acid and short chain amino acids and unreactive (blocked) NH 2 -terminal groups or aspartic acid-asparagine (Asx). However, the amyloid protein(s) from each individual differs from that of the others in molecular weight, in amino acid composition and in the presence or absence of specific tryptic peptides. Amyloid protein(s) from the liver and spleen of the same individual is identical. No chemical characteristics distinguish amyloid proteins derived from cases classified clinically as "primary" from those classified as "secondary." There is a striking chemical similarity between amyloid proteins and the NH 2 -terminal variable fragment of the light and heavy chain of immumoglobulin proteins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom