z-logo
open-access-imgOpen Access
Simulation and flight experiments of a quadrotor tail-sitter vertical take-off and landing unmanned aerial vehicle with wide flight envelope
Author(s) -
Ximin Lyu,
Haowei Gu,
Jinni Zhou,
Zexiang Li,
Shaojie Shen,
Fu Zhang
Publication year - 2018
Publication title -
international journal of micro air vehicles
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.324
H-Index - 21
eISSN - 1756-8307
pISSN - 1756-8293
DOI - 10.1177/1756829318813633
Subject(s) - flight test , flight envelope , thrust , aerospace engineering , aerodynamics , flight dynamics , controller (irrigation) , flight simulator , engineering , propeller , ranging , wind tunnel , control theory (sociology) , vehicle dynamics , simulation , computer science , marine engineering , control (management) , artificial intelligence , telecommunications , agronomy , biology
This paper presents the modeling, simulation, and control of a small-scale electric powered quadrotor tail-sitter vertical take-off and landing unmanned aerial vehicle. In the modeling part, a full attitude wind tunnel test is performed on the full-scale unmanned aerial vehicle to capture its aerodynamics over the flight envelope. To accurately capture the degradation of motor thrust and torque at the presence of the forward speed, a wind tunnel test on the motor and propeller is also carried out. The extensive wind tunnel tests, when combined with the unmanned aerial vehicle kinematics model, dynamics model and other practical constraints such as motor saturation and delay, lead to a complete flight simulator that can accurately reveal the actual aircraft dynamics as verified by actual flight experiments. Based on the developed model, a unified attitude controller and a stable transition controller are designed and verified. Both simulation and experiments show that the developed attitude controller can stabilize the unmanned aerial vehicle attitude over the entire flight envelope and the transition controller can successfully transit the unmanned aerial vehicle from vertical flight to level flight with negligible altitude dropping, a common and fundamental challenge for tail-sitter vertical take-off and landing aircrafts. Finally, when supplied with the designed controller, the tail-sitter unmanned aerial vehicle can achieve a wide flight speed envelope ranging from stationary hovering to fast level flight. This feature dramatically distinguishes our aircraft from conventional fixed-wing airplanes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom