z-logo
open-access-imgOpen Access
Improving droplet sizing methodology for spray dynamics investigation
Author(s) -
Jia Jie Woo,
Vikram Garaniya,
Rouzbeh Abbassi
Publication year - 2016
Publication title -
international journal of spray and combustion dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.614
H-Index - 16
eISSN - 1756-8285
pISSN - 1756-8277
DOI - 10.1177/1756827716640244
Subject(s) - computer science , matlab , image processing , sizing , range (aeronautics) , hough transform , simulation , image (mathematics) , computer vision , materials science , art , visual arts , composite material , operating system
Spray modelling is one of the most useful techniques to characterize engine performance, efficiency and emissions. The size of droplets is one of the key variables that govern the efficiency of combustion of the liquid fuel. This study aims to develop an interactive tool using MATLAB codes that identifies the droplets and their sizes from the image taken with the long distance microscope in the spray chamber setup. In this developed method, firstly the background of the image was removed and then image processing techniques, dilation and erosion, were applied to the image file to refine the image files. Subsequently, circle detection method based on the Hough Transform algorithm with the function of imfindcircles was implemented. This function of the program allows the user to identify size droplets from the image files. A statistical study was conducted with the results automated from the MATLAB program using a different set of threshold values of black and white contrast. The results showed an optimal range for the threshold (black and white) values between 40 and 70. This optimal threshold range was established based on consideration of the correct and incorrect identification of the droplets. The results indicated that the program has the ability to identify the droplet providing size and numbers. The MATLAB program was developed using MATLAB compiler and can be used at different workstations

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom