
Comparison of Li2CO3-Na2CO3-K2CO3, KCl-MgCl2 and NaNO3-KNO3 as heat transfer fluid for different sCO2 and steam power cycles in CSP tower plant under different DNI conditions
Author(s) -
Kamran Mahboob,
Awais Khan,
M. A. Khan,
Jawad Sarwar,
Tauseef Aized Khan
Publication year - 2021
Publication title -
advances in mechanical engineering/advances in mechanical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 40
eISSN - 1687-8140
pISSN - 1687-8132
DOI - 10.1177/16878140211011900
Subject(s) - rankine cycle , degree rankine , power station , heliostat , electricity generation , materials science , work (physics) , chemistry , analytical chemistry (journal) , thermodynamics , nuclear engineering , power (physics) , physics , engineering , solar energy , electrical engineering , chromatography
This work presents the characteristics of a solar thermal tower power plant in two different places (Seville and Dubai) using three different HTFs (NaNO 3 -KNO 3 , KCl-MgCl 2 and Li 2 CO 3 -Na 2 CO 3 -K 2 CO 3 ) and three different power cycles (Rankine, sCO 2 Recompression and sCO 2 Partial cooling cycles). An indirect configuration is considered for the Gemasolar power plant. Detailed modelling is carried out for the conversion of incident power on the heliostat to the output electricity. Optimization of the cycle is carried out to determine the most promising cycle configuration for efficiency. The results showed that for the Gemasolar power plant configuration, the performance of the KCl-MgCl 2 based plant was poorest amongst all. NaNO 3 -KNO 3 based plant has shown good performance with the Rankine cycle but plant having Li 2 CO 3 -Na 2 CO 3 -K 2 CO 3 as HTF was best for all three cycles. Partial cooling was the best performing cycle at both locations with all three HTFs. Placing the Seville Plant in Dubai has improved the efficiency from 23.56% to 24.33%, a capacity factor improvement of 21 and 52 GW additional power is generated. The optimization of the plant in Dubai has shown further improvements. The efficiency is improved, the Capacity factor is increased by 31.2 and 77.8 GW of additional electricity is produced.