
Modification of the Neurotrophin-3 Gene Promotes Cholinergic Neuronal Differentiation and Survival of Neural Stem Cells Derived from Rat Embryonic Spinal Cord In Vitro and In Vivo
Author(s) -
Shuo Lin,
Y Wang,
C Zhang,
Jun Xu
Publication year - 2012
Publication title -
journal of international medical research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 57
eISSN - 1473-2300
pISSN - 0300-0605
DOI - 10.1177/147323001204000423
Subject(s) - neural stem cell , neurotrophin 3 , stem cell , in vivo , embryonic stem cell , cholinergic , microbiology and biotechnology , transplantation , viral vector , biology , cellular differentiation , medicine , neurotrophic factors , gene , neuroscience , brain derived neurotrophic factor , genetics , receptor , recombinant dna
OBJECTIVE: To investigate the effects of the neurotrophin-3 ( NTF3) gene on the survival and differentiation of neural stem cells (NSCs) in vitro and in vivo. METHODS: The NTF3 gene was isolated from rats, amplified by polymerase chain reaction (PCR) and subcloned into the lentiviral vector pWPXL-MOD to construct a lentiviral expression vector pWPXL-MOD— NTF3. Reverse transcription—PCR and Western blotting were used to analyse NTF3 mRNA and protein levels, respectively. Adult rats with sectioned tibial nerves received implants of NSCs transfected with either pWPXL-MOD— NTF3 ( n = 30) or an empty expression vector ( n = 30). In vitro and in vivo cell differentiation and survival were determined by fluorescence immunohistochemistry. RESULTS: Expression of NTF3 significantly increased the differentiation of NSCs into cholinergic neurons both in vitro and in vivo. NTF3-expressing NSCs implanted into the tibial nerve also survived longer than cells without NTF3 gene modification. CONCLUSIONS: The NTF3 gene promoted differentiation of NSCs into cholinergic neurons and enhanced neuronal cell survival. These findings may have clinical implications for cell transplantation therapy in patients with nerve injury.