z-logo
open-access-imgOpen Access
Ephedrine ameliorates cerebral ischemia injury via inhibiting NOD-like receptor pyrin domain 3 inflammasome activation through the Akt/GSK3β/NRF2 pathway
Author(s) -
Qunxian Li,
Jing Wu,
Lixian Huang,
Bo Zhao,
Qingbin Li
Publication year - 2021
Publication title -
human and experimental toxicology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 78
eISSN - 1477-0903
pISSN - 0960-3271
DOI - 10.1177/09603271211052981
Subject(s) - inflammasome , medicine , proinflammatory cytokine , pharmacology , pyrin domain , protein kinase b , ephedrine , ischemia , pi3k/akt/mtor pathway , microglia , receptor , apoptosis , inflammation , chemistry , biochemistry
Ischemic stroke is a leading cause of death and long-term disability worldwide. The aim of this study is to explore the potential function of ephedrine in ischemic stroke and the underlying molecular mechanism. A middle cerebral artery occlusion (MCAO) rat model was established. The potential effects of ephedrine on MCAO rats and LPS-stimulated BV2 microglial cells were evaluated. Ephedrine reduced the infarct volume, cell apoptosis, brain water content, neurological score, and proinflammatory cytokines (TNF-α and IL-1β) production in MCAO rats. Ephedrine treatment also suppressed TNF-α and IL-1β production and NOD-like receptor pyrin domain 3 (NLRP3) inflammasome activation in BV2 microglial cells. The expression of NLRP3, caspase-1, and IL-1β was suppressed by ephedrine. Moreover, ephedrine treatment increased the phosphorylation of Akt and GSK3β and nuclear NRF2 levels in LPS-treated BV2 microglial cells. Meanwhile, LY294002 attenuated the inhibitory effects of ephedrine on NLRP3 inflammasome activation and TNF-α and IL-1β production. In addition, the level of pAkt was increased, while NLRP3, caspase-1, and IL-1β were decreased by ephedrine treatment in MCAO rats. In conclusion, ephedrine ameliorated cerebral ischemia injury via inhibiting NLRP3 inflammasome activation through the Akt/GSK3β/NRF2 pathway. Our results revealed a potential role of ephedrine in ischemic stroke treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom