
Expression of Internalin a and Biofilm Formation among Listeria Monocytogenes Clinical Isolates
Author(s) -
Giovanna Franciosa,
Antonella Maugliani,
Concetta Scalfaro,
Francesca Floridi,
Paolo Aureli
Publication year - 2009
Publication title -
international journal of immunopathology and pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.724
H-Index - 53
eISSN - 2058-7384
pISSN - 0394-6320
DOI - 10.1177/039463200902200121
Subject(s) - biofilm , listeria monocytogenes , microbiology and biotechnology , biology , western blot , proteolysis , protease , chemistry , bacteria , gene , biochemistry , genetics , enzyme
Internalin A (InlA), a cell wall-bound protein of Listeria monocytogenes, is among the major components involved in the adhesion to and invasion of host cells expressing specific forms of E-cadherin. Some L. monocytogenes strains secrete truncated non-functional forms of InlA. The purpose of this study is to compare the biofilm-forming abilities of L. monocytogenes strains from clinical sources expressing InlA proteins in the different forms. A total of 70 L. monocytogenes strains were examined using SDS-PAGE, Western blot, DNA sequencing, and microtitre plate biofilm formation assays. We found that 8 of the 70 strains expressed truncated InlA, and that this group of strains exhibited significantly enhanced biofilm-forming ability compared to the group expressing full-length InlA. Further experiments showed that: (i) L. monocytogenes biofilms were detached by treatment with protease K; (ii) protein fragments resulting from proteolysis, rather than intact proteins, are responsible for biofilm enhancement, because biofilm formation was impaired by the protease inhibitor a2-macroglobulin; (iii) truncated and/or proteolytically cleaved InlA are likely involved in the biofilm enhancement, based on the effects that anti-InlA monoclonal antibodies produced on the biofilm formation of L. monocytogenes strains expressing either truncated or full-length InlA. These data provide a basis for further investigation of the molecular structure and composition of L. monocytogenes biofilms.