z-logo
open-access-imgOpen Access
Simulating the Nasal Cycle with Computational Fluid Dynamics
Author(s) -
Patel Ruchin G.,
Garcia Guilherme J. M.,
FrankIto Dennis O.,
Kimbell Julia S.,
Rhee John S.
Publication year - 2015
Publication title -
otolaryngology–head and neck surgery
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.232
H-Index - 121
eISSN - 1097-6817
pISSN - 0194-5998
DOI - 10.1177/0194599814559385
Subject(s) - medicine , nasal cavity , nose , surgery , anesthesia
Objectives (1) To develop a method to account for the confounding effect of the nasal cycle when comparing preoperative and postoperative objective measures of nasal patency. (2) To illustrate this method by reporting objective measures derived from computational fluid dynamics (CFD) models spanning the full range of mucosal engorgement associated with the nasal cycle in 2 subjects. Study Design Retrospective. Setting Academic tertiary medical center. Subjects and Methods A cohort of 24 patients with nasal airway obstruction was reviewed to select the 2 patients with the greatest reciprocal change in mucosal engorgement between preoperative and postoperative computed tomography (CT) scans. Three‐dimensional anatomic models were created based on the preoperative and postoperative CT scans. Nasal cycling models were also created by gradually changing the thickness of the inferior turbinate, middle turbinate, and septal swell body. Moreover, CFD was used to simulate airflow and to calculate nasal resistance and the average heat flux. Results Before accounting for the nasal cycle, patient A appeared to have a paradoxical worsening nasal obstruction in the right cavity postoperatively. After accounting for the nasal cycle, patient A had small improvements in objective measures postoperatively. The magnitude of the surgical effect also differed in patient B after accounting for the nasal cycle. Conclusion By simulating the nasal cycle and comparing models in similar congestive states, surgical changes in nasal patency can be distinguished from physiological changes associated with the nasal cycle. This ability can lead to more precise comparisons of preoperative and postoperative objective measures and potentially more accurate virtual surgery planning.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here