z-logo
open-access-imgOpen Access
UV-induced Melanin Chemiexcitation
Author(s) -
Douglas E. Brash
Publication year - 2016
Publication title -
toxicologic pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.613
H-Index - 108
eISSN - 1533-1601
pISSN - 0192-6233
DOI - 10.1177/0192623316632072
Subject(s) - pyrimidine dimer , melanin , photoprotection , photochemistry , peroxynitrite , chemistry , biophysics , human skin , dna damage , superoxide , photolyase , dna , biochemistry , biology , dna repair , photosynthesis , genetics , enzyme
Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPDs), DNA photoproducts usually created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. Surprisingly, we found that, in melanocytes, CPDs were generated for hours after UVA or UVB exposure. These “dark CPDs” constituted the majority of CPDs in cultured human and murine melanocytes and in mouse skin, and they were most prominent in skin containing pheomelanin, the melanin responsible for blonde and red hair. The mechanism was also a surprise. Dark cyclobutane pyrimidine dimers (CPDs) arise when ultraviolet (UV)-induced superoxide and nitric oxide combine to form peroxynitrite, one of the few biological molecules capable of exciting an electron. This process, termed “chemiexcitation,” is the source of bioluminescence in lower organisms. Excitation occurred in fragments of melanin, creating a quantum triplet state that had the energy of a UV photon but which induced CPDs by radiationless energy transfer to DNA. UVA and peroxynitrite also solubilized melanin and permeabilized the nuclear membrane, allowing melanin to enter. Melanin is evidently carcinogenic as well as protective. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom