z-logo
open-access-imgOpen Access
Estimation of Ultraviolet-A Irradiance from Measurements of 368-nm Spectral Irradiance
Author(s) -
Richard H. Grant,
James R. Slusser
Publication year - 2005
Publication title -
journal of atmospheric and oceanic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.774
H-Index - 124
eISSN - 1520-0426
pISSN - 0739-0572
DOI - 10.1175/jtech1823.1
Subject(s) - irradiance , ultraviolet , radiative transfer , solar irradiance , environmental science , atmospheric radiative transfer codes , solar zenith angle , zenith , atmospheric sciences , radiation , sky , remote sensing , spectroradiometer , physics , optics , meteorology , geography , reflectivity
The estimation of ultraviolet-A (UV-A) radiation across the earth’s surface is needed to model plant productivity and future impacts of ultraviolet-B radiation on plant productivity. We have developed two models to estimate the UV-A irradiance from measurements of the diffuse and global spectral irradiance at 368 nm. The models were developed from 30-min-interval measurements made throughout 2000 at three locations across the United States and evaluated from 30-min measurements made throughout 2000 at three additional locations and throughout 2001 and 2002 at seven locations. UV-A irradiance was best estimated from measured global 368-nm irradiance and empirical functions defining the UV-A and 368-nm irradiance values estimated from a theoretical pseudospherical two-stream discrete-ordinates radiative transfer model. The radiative transfer model provided baseline irradiance relationships between UV-A irradiance and 368-nm spectral irradiance. The semiempirical model estimated the UV-A irradiance ...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom