z-logo
open-access-imgOpen Access
Evaluation of the High-Resolution CMORPH Satellite Rainfall Product Using Dense Rain Gauge Observations and Radar-Based Estimates
Author(s) -
Emad Habib,
Alemseged Tamiru Haile,
Yudong Tian,
R. Joyce
Publication year - 2012
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/jhm-d-12-017.1
Subject(s) - environmental science , rain gauge , satellite , radar , meteorology , remote sensing , climatology , computer science , geology , geography , precipitation , telecommunications , aerospace engineering , engineering
This study focuses on the evaluation of the NOAA–NCEP Climate Prediction Center (CPC) morphing technique (CMORPH) satellite-based rainfall product at fine space–time resolutions (1 h and 8 km). The evaluation was conducted during a 28-month period from 2004 to 2006 using a high-quality experimental rain gauge network in southern Louisiana, United States. The dense arrangement of rain gauges allowed for multiple gauges to be located within a single CMORPH pixel and provided a relatively reliable approximation of pixel-average surface rainfall. The results suggest that the CMORPH product has high detection skills: the probability of successful detection is ~80% for surface rain rates >2 mm h−1 and probability of false detection <3%. However, significant and alarming missed-rain and false-rain volumes of 21% and 22%, respectively, were reported. The CMORPH product has a negligible bias when assessed for the entire study period. On an event scale it has significant biases that exceed 100%. The fine-re...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom