Strong Ocean–Atmosphere Interactions during a Short-Term Hot Event over the Western Pacific Warm Pool in Response to El Niño
Author(s) -
Guixing Chen,
Huiling Qin
Publication year - 2016
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-15-0595.1
Subject(s) - climatology , sea surface temperature , convection , troposphere , atmospheric convection , subsidence , atmosphere (unit) , geology , western hemisphere warm pool , atmospheric instability , environmental science , upwelling , atmospheric sciences , walker circulation , oceanography , meteorology , geography , wind speed , paleontology , structural basin
A short-term hot event with a very high sea surface temperature (SST ≥ 30°C) occurred in the western Pacific warm pool during November 2006. The interactions between this ocean hot event, atmospheric convection, and large-scale dynamics are studied using satellite observations, buoy measurements, air–sea fluxes analysis, and global reanalysis. It is shown that SST variation and deep convection over the western Pacific behave like a remote response to the El Nino warm SST anomaly in the central Pacific that induces westward-moving atmospheric convection and equatorial waves. The large-scale subsidence associated with propagating convection not only promotes high SSTs in the western Pacific through establishing cloud-free conditions and increasing heat content in a thin ocean mixed layer, but also produces convective instability through capping substantial water vapor in the lower troposphere. Under the precondition of convective instability and the steering of tropical easterlies, some convective s...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom