The 13–14 December 2001 IMPROVE-2 Event. Part I: Synoptic and Mesoscale Evolution and Comparison with a Mesoscale Model Simulation
Author(s) -
Matthew F. Garvert,
Brian A. Colle,
Clifford F. Mass
Publication year - 2005
Publication title -
journal of the atmospheric sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.853
H-Index - 173
eISSN - 1520-0469
pISSN - 0022-4928
DOI - 10.1175/jas3549.1
Subject(s) - mesoscale meteorology , baroclinity , mm5 , radiosonde , climatology , precipitation , synoptic scale meteorology , meteorology , storm , geology , forcing (mathematics) , environmental science , atmospheric sciences , geography
This paper describes the large-scale synoptic and mesoscale features of a major precipitation event that affected the second Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE-2) study area on 13–14 December 2001. The fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) was used to simulate both the synoptic and mesoscale features of the storm. Extensive model verification was performed utilizing the wealth of observational assets available during the experiment, including in situ aircraft measurements, radiosondes, radar data, and surface observations. The 13–14 December 2001 storm system was characterized by strong low-level cross-barrier flow, heavy precipitation, and the passage of an intense baroclinic zone. The model realistically simulated the three-dimensional thermodynamic and kinematic fields, the forward-tilted vertical structure of the baroclinic zone, and the associated major precipitation band. Deficiencies in th...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom