z-logo
open-access-imgOpen Access
On Improving 4-km Mesoscale Model Simulations
Author(s) -
Aijun Deng,
D. Stauffer
Publication year - 2006
Publication title -
journal of applied meteorology and climatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.079
H-Index - 134
eISSN - 1558-8432
pISSN - 1558-8424
DOI - 10.1175/jam2341.1
Subject(s) - mesoscale meteorology , meteorology , advection , mm5 , environmental science , convection , planetary boundary layer , parametrization (atmospheric modeling) , convective available potential energy , atmospheric convection , forcing (mathematics) , climatology , precipitation , convective storm detection , numerical weather prediction , turbulence , large eddy simulation , atmospheric sciences , physics , geology , radiative transfer , thermodynamics , quantum mechanics
A previous study showed that use of analysis-nudging four-dimensional data assimilation (FDDA) and improved physics in the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) produced the best overall performance on a 12-km-domain simulation, based on the 18–19 September 1983 Cross-Appalachian Tracer Experiment (CAPTEX) case. However, reducing the simulated grid length to 4 km had detrimental effects. The primary cause was likely the explicit representation of convection accompanying a cold-frontal system. Because no convective parameterization scheme (CPS) was used, the convective updrafts were forced on coarser-than-realistic scales, and the rainfall and the atmospheric response to the convection were too strong. The evaporative cooling and downdrafts were too vigorous, causing widespread disruption of the low-level winds and spurious advection of the simulated tracer. In this study, a series of experiments was designed to address this g...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom