z-logo
open-access-imgOpen Access
Low-Latitude Freshwater Influence on Centennial Variability of the Atlantic Thermohaline Circulation
Author(s) -
Michael Vellinga,
Peili Wu
Publication year - 2004
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/3219.1
Subject(s) - thermohaline circulation , climatology , atlantic multidecadal oscillation , intertropical convergence zone , north atlantic deep water , geology , sea surface temperature , ocean current , tropical atlantic , environmental science , shutdown of thermohaline circulation , anomaly (physics) , north atlantic oscillation , oceanography , salinity , precipitation , geography , meteorology , physics , condensed matter physics
Variability of the thermohaline circulation (THC) has been analyzed in a long control simulation by the Met Office's Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3). It is shown that internal THC variability in the coupled climate system is concentrated at interannual and centennial time scales, with the centennial mode being dominant. Centennial oscillations of the THC can impact surface climate via an interhemispheric SST contrast of 0.1°C in the Tropics and more than 0.5°C in mid- and high latitudes. A mechanism is proposed based on detailed process analysis involving large-scale air–sea interaction on multidecadal time scales. Anomalous northward ocean heat transport associated with a strong phase of the Atlantic THC generates a cross-equatorial SST gradient. This causes the ITCZ to move to a more northerly position with increased strength. The extra rainfall resulting from the anomalous ITCZ imposes a freshwater flux and produces a salinity anomaly in the trop...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom