A New Method for the Comparison of Trend Data with an Application to Water Vapor
Author(s) -
Sebastian Mieruch,
Stefan Noël,
Maximilian Reuter,
H. Bovensmann,
John P. Burrows,
Marc Schröder,
Jörg Schulz
Publication year - 2011
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/2011jcli3669.1
Subject(s) - water vapor , radiosonde , environmental science , sciamachy , water cycle , satellite , climatology , meteorology , atmospheric sciences , troposphere , geography , geology , ecology , aerospace engineering , engineering , biology
Global total column water vapor trends have been derived from both the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite data and from globally distributed radiosonde measurements, archived and quality controlled by the Deutscher Wetterdienst (DWD).The control of atmospheric water vapor amount by the hydrological cycle plays an important role in determining surface temperature and its response to the increase in man-made greenhouse effect. As a result of its strong infrared absorption, water vapor is the most important naturally occurring greenhouse gas. Without water vapor, the earth surface temperature would be about 20 K lower, making the evolution of life, as we know it, impossible. The monitoring of water vapor and its evolution in time is therefore of utmost importance for our understanding of global climate change. Comparisons of trends derived from independent water vapor measurements from satellite...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom