Concurrent Cloud-to-Ground Lightning and Precipitation Enhancement in the Atlanta, Georgia (United States), Urban Region
Author(s) -
L. Shea Rose,
J. Anthony Stallins,
Mace L. Bentley
Publication year - 2008
Publication title -
earth interactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.309
H-Index - 38
ISSN - 1087-3562
DOI - 10.1175/2008ei265.1
Subject(s) - thunderstorm , lightning (connector) , precipitation , environmental science , meteorology , atlanta , lightning detection , climatology , upper atmospheric lightning , atmospheric sciences , lightning strike , geography , geology , physics , metropolitan area , power (physics) , archaeology , quantum mechanics
This study explores how the Atlanta, Georgia (United States), urban region influences warm-season (May through September) cloud-to-ground lightning flashes and precipitation. Eight years (1995–2003) of flashes from the National Lightning Detection Network and mean accumulated precipitation from the North American Regional Reanalysis model were mapped under seven different wind speed and direction combinations derived from cluster analysis. Overlays of these data affirmed a consistent coupling of lightning and precipitation enhancement around Atlanta. Maxima in precipitation and lightning shifted in response to changes in wind direction. Differences in the patterns of flash metrics (flash counts versus thunderstorm counts), the absence of any strong urban signal in the flashes of individual thunderstorms, and the scales over which flashes and precipitation enhancement developed are discussed in light of their support for land-cover- and aerosol-based mechanisms of urban weather modification. This ...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom