In Vivo Evidence for Impaired Glymphatic Function in the Visual Pathway of Patients With Normal Pressure Hydrocephalus
Author(s) -
Henrik Holvin Jacobsen,
Tiril Sandell,
Øystein Kalsnes Jørstad,
Morten C. Moe,
Geir Ringstad,
Per Kristian Eide
Publication year - 2020
Publication title -
investigative ophthalmology and visual science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.935
H-Index - 218
eISSN - 1552-5783
pISSN - 0146-0404
DOI - 10.1167/iovs.61.13.24
Subject(s) - glymphatic system , cerebrospinal fluid , medicine , magnetic resonance imaging , hydrocephalus , normal pressure hydrocephalus , gadobutrol , nuclear medicine , cardiology , pathology , dementia , radiology , disease
Purpose Impaired ability to remove toxic metabolites from central nervous system may be an important link between cerebral and ophthalmic degenerative diseases. The aim of the present study was to compare the glymphatic function in the visual pathway in patients with idiopathic normal pressure hydrocephalus (iNPH), a neurodegenerative dementia subtype, with a reference group. Methods We compared 31 subjects with Definite iNPH (i.e., shunt-responsive) with 13 references in a prospective and observational study. After intrathecal injection of the magnetic contrast agent gadobutrol (Gadovist, 0.5 mL, 1.0 mmol/mL, Bayer Pharma AG), serving as a tracer, consecutive magnetic resonance imaging (MRI) scans were obtained (next 24–48 hours). The normalized MRI T1 signal recorded in the cerebrospinal fluid (CSF) and along the visual pathway served as a semi-quantitative measure of tracer enrichment. Gadobutrol does not penetrate the blood-brain barrier and is thus confined to the extravascular space. Overnight measurements of pulsatile intracranial pressure were used as a surrogate marker for the intracranial compliance. Results The tracer enriched the prechiasmatic cistern similarly in both groups, but clearance was delayed in the iNPH group. Moreover, both delayed enrichment and clearance of the tracer were observed in the visual pathway in the iNPH subjects. The enrichment in the visual pathway and the CSF correlated. Individuals with elevated pulsatile intracranial pressure showed reduced enrichment within the visual pathway. Conclusions There was delayed enrichment and clearance of a tracer in the visual pathway of iNPH patients, which suggests impaired glymphatic function in the visual pathway in this disease.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom